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Abstract

Impulse control disorders (ICDs) are a debilitating non-motor symptom of Parkinson’s
disease (PD), often associated with dopaminergic therapy. However, their occurrence in
some patients but not others suggests additional biological mechanisms, including the
gut microbiome. In this study, we analyzed 191 PD patients (14 with ICDs, 177 without)
using 16S rRNA gene sequencing to explore the association between gut microbiota and
ICDs. No significant differences were observed in alpha or beta diversity between groups,
but several bacterial taxa showed differential abundances. Notably, Methanobrevibacter
and Intestinimonas butyriciproducens were enriched in ICD patients. Functional pathway
analysis revealed differences in metabolic pathways, including enrichment of xenobiotic
degradation and nicotinate metabolism in the ICD group. These findings suggest that specific
gut microbial taxa and their associated metabolic functions may contribute to ICDs in
PD, highlighting a potential non-dopaminergic mechanism and opening new avenues for
microbiome-targeted intervention.

Keywords: Parkinson’s disease; impulse control disorders; gut microbiota; gut–brain axis;
microbiome metabolism

1. Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder with a sharply rising global

prevalence. Between 1990 and 2015, epidemiological studies estimate that the number of
PD cases rose more than doubled, reaching approximately 6.2 million worldwide [1,2].
This increase has imposed a significant burden on healthcare systems, not only through
direct medical costs but also by adversely affecting the well-being of patients and their
families. While PD is primarily characterized by unintended or uncontrollable movements,
research also highlights the importance of non-motor symptoms. Many of these non-
motor symptoms such as mood disturbances, sleep dysfunction, and cognitive impairment
substantially contribute to disease burden. Impulse control disorders (ICDs) have emerged
as a particularly disruptive yet often overlooked clinical issue. ICDs in PD manifest
as compulsive behaviors that patients struggle to control, regardless of their potentially
harmful consequences [3]. Failure to resist a temptation or an impulse often results in
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pathological gambling, compulsive shopping, binge eating disorder, hypersexuality, and
punding, which refers to repetitive, purposeless activities. ICDs can be as prevalent as
between 13% and 35% [4,5] among PD patients receiving dopamine agonist.

ICDs are a well-known adverse effect of dopaminergic therapy, particularly dopamine
agonists [6,7], which are medications prescribed to alleviate motor symptoms in PD. These
compounds activate dopamine receptors in order to compensate patients’ dopamine defi-
ciency. Despite the effectiveness in treating motor symptoms, their influence on the brain’s
reward circuitry can also predispose patients to impulsive and compulsive behaviors. As a
result, ICD management often involves adjustments to dopaminergic treatment, such as re-
ducing dopamine agonist dosage or transitioning to alternative medications like levodopa.
While these strategies may help mitigate impulsive behaviors, they risk exacerbating motor
symptoms, underscoring the need for alternative therapeutic approaches. It is also worth
mentioning that although dopaminergic therapy triggers ICDs [4,5], this alone does not
fully explain why PD patients not receiving dopaminergic treatment still develop ICDs [4,8].

Emerging research suggests that gut microbiota dysbiosis plays a pivotal role in PD
pathogenesis and progression, with potential implications for non-motor symptoms [9–12].
The gut microbiome influences neurotransmitter metabolism and regulation, affecting key
molecules such as dopamine, serotonin, and gamma-aminobutyric acid (GABA) [13]. It also
modulates brain function through interactions with the hypothalamic–pituitary–adrenal
(HPA) axis and neuroinflammation [13]. Furthermore, certain neurotoxic metabolites
produced by gut bacteria, including D-lactic acid and ammonia, can enter the central
nervous system via the vagus nerve, potentially impairing cognitive and behavioral
regulation [14–16]. Although substantial evidence links gut–brain axis dysfunction to
PD, there is currently no direct evidence connecting gut microbiota dysbiosis to ICDs in
PD patients.

Based on these insights, we hypothesize that gut microbiota may regulate impulsive
behavior in PD through the gut–brain axis and contribute to ICD development. If validated,
this hypothesis would bridge a crucial gap in the current understanding of ICD pathophys-
iology and support the development of non-pharmacological interventions such as dietary
modifications, probiotic supplementation, or other microbiome-targeted therapies. These
approaches could provide safer and more sustainable alternatives for managing or even
preventing ICDs in PD patients.

Our study aims to investigate the relationship between gut microbiota and ICDs in
PD patients. PD patients with and without ICD were recruited, and their gut microbiota
composition was analyzed using 16S rRNA sequencing. Functional pathway analysis
was also conducted, which allowed us to assess whether gut microbial metabolites are
statistically associated with impulsive behaviors. Through conducting the aforementioned
analyses, we hope to clarify the role of gut microbiome in managing non-motor symptoms
in PD.

2. Results
2.1. Demography

Of all the 191 PD patients being studied, 14 exhibited impulsive behaviors. Table 1
presents the demographic and dietary characteristics of participants with and without im-
pulsive behaviors. There were no statistically significant differences in gender distribution
between the two groups. The proportion of participants aged 65 years or older was also
comparable. Antibiotic use was reported by 5.1% of the non-impulsive group, whereas
none of the participants in the impulsive group had taken antibiotics. Similarly, there was
no significant difference in probiotic use between the two groups. Daily fruit or vegetable
consumption, as well as the intake of grains, meat, yogurt, and nuts, showed no significant
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differences between the two groups. Additionally, there was no significant difference in the
use of dopamine agonists or carbidopa-levodopa between the two groups. To minimize
potential confounding effects despite the similarities in the aforementioned characteristics
between the two groups, sex, age, dopamine agonist use, and carbidopa-levodopa use were
included as covariates in subsequent analyses.

Table 1. Demographic characteristics and dietary habits of Parkinson’s disease patients with and
without impulsive behaviors.

Impulse (n = 14) w/o Impulse (n = 177) p-Value

Gender 0.089
Female 8 (57.1%) 55 (31.1%)
Male 6 (42.9%) 122 (68.9%)

Age 0.932
≤65 6 (42.9%) 67 (37.9%)
>65 8 (57.1%) 110 (62.1%)

Antibiotics 0.603
No 14 (100.0%) 165 (93.2%)
Yes 0 (0.0%) 9 (5.1%)
Missing 0 (0.0%) 3 (1.7%)

Probiotics 0.111
No 8 (57.1%) 129 (72.9%)
Yes 6 (42.9%) 36 (20.3%)
Missing 0 (0.0%) 12 (6.8%)

Eat fruits or vegetable daily 0.772
No 4 (28.6%) 37 (20.9%)
Yes 10 (71.4%) 139 (78.5%)
Missing 0 (0.0%) 1 (0.6%)

Eat grains daily 0.501
No 6 (42.9%) 51 (28.8%)
Yes 8 (57.1%) 123 (69.5%)
Missing 0 (0.0%) 3 (1.7%)

Eat meats daily 0.922
No 6 (42.9%) 76 (42.9%)
Yes 8 (57.1%) 99 (55.9%)
Missing 0 (0.0%) 2 (1.1%)

Eat nuts daily 0.119
No 14 (100.0%) 135 (76.3%)
Yes 0 (0.0%) 41 (23.2%)
Missing 0 (0.0%) 1 (0.6%)

Eat yogurt daily 0.685
No 12 (85.7%) 162 (91.5%)
Yes 2 (14.3%) 14 (7.9%)
Missing 0 (0.0%) 1 (0.6%)

Dopamine agonist 0.171
No 10 (71.4%) 86 (48.6%)
Yes 4 (28.6%) 91 (51.4%)

Carbidopa levodopa 0.665
No 1 (7.1%%) 27 (15.3%)
Yes 13 (92.9%) 150 (84.7%)

2.2. Diversity Analysis in Impulsive and Non-Impulsive PD Patients

Figure 1 presents the alpha and beta diversity of gut microbiota in PD patients with
and without impulsive behaviors. Alpha diversity indices, including Observed, Chao1,
Shannon, and Simpson, were consistently lower in the impulsive group; however, none
of these differences reached statistical significance. These results suggest that impulsive
behaviors do not have a substantial impact on gut microbial richness or evenness in
PD patients. Beta diversity analysis further confirmed that the overall gut microbial
composition did not significantly differ between the two groups. PCoA plots based on
Canberra, Bray–Curtis, Unweighted UniFrac, and Weighted UniFrac distances showed
no significant clustering differences, indicating that microbial community structures were
largely similar between impulsive and non-impulsive PD patients.
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Figure 1. Alpha and beta diversity of gut microbiota in PD patients with and without impul-
sive behaviors. (A) Boxplots of alpha diversity indices (Observed, Chao1, Shannon, and Simpson)
show lower diversity in the impulsive group, but the differences were not statistically significant.
(B) Beta diversity analysis using Canberra, Bray–Curtis, Unweighted UniFrac, and Weighted UniFrac
metrics indicates no significant differences between the two groups, suggesting similar overall
microbial composition.
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2.3. Differential Abundance and Network Analysis

To further investigate gut microbial differences between groups, differential abundance
analysis was performed at both the genus and species levels, as shown in Figure 2. Before
FDR correction, several genera exhibited significant differences between the impulsive and
non-impulsive groups. After FDR correction, Methanobrevibacter remained significantly
enriched in the impulsive group. Other genera, including Ruminococcus gnavus group,
Eggerthella, Faecalibacterium, Gastranaerophilales, Lachnospiraceae UCG-008, Parabacteroides,
Peptococcus, Phocea, Prevotella 9, and Proteus, also showed differences, though they did not
remain significant after correction. At the species level, three species initially showed sig-
nificant differences before FDR correction. After correction, Intestinimonas butyriciproducens
was the only species that remained significantly enriched in the impulsive group.

(A) (B) 

  

Figure 2. Differential abundance analysis at the genus (A) and species (B) levels between impulsive
and non-impulsive Parkinson’s disease patients, visualized by volcano plots. (A) At the genus level,
several taxa exhibited significant differences before FDR correction. After correction, Methanobrevibac-
ter remained significantly enriched in the impulsive group. (B) At the species level, Intestinimonas
butyriciproducens was the only species that remained significantly enriched in the impulsive group fol-
lowing FDR correction. Genera and species that remained significant after correction are highlighted
in bold. In the volcano plots, the horizontal dashed line marks the p-value threshold of 0.05, with
taxa above this line considered statistically significant. The vertical solid line indicates the log2 fold
change of zero. Therefore, taxa on the right are positively associated with impulsivity, while those on
the left are negatively associated.

Figure 3A,B show the network analysis of gut bacterial genera that were significantly
present in the impulsive and non-impulsive groups, respectively. In the impulsive group,
five clusters of genera were identified, with significant correlations among [Ruminococ-
cus]_gnavus group, Eggerthella, Proteus, Gastranaerophilales, and Lachnospiraceae_UCG-008.
Methanobrevibacter, which exhibits a significant difference in abundance between the im-
pulse and non-impulse groups after FDR correction, shows a strong positive correlation
with Cloacibacillus. Together, they form a distinct cluster, separate from other genera. In
contrast, the non-impulsive group exhibited three clusters: Prevotella_9, Parabacteroides, and
Faecalibacterium. These clusters highlight distinct microbial network patterns between the
two groups.
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Figure 3. Network analysis illustrating associations gut bacterial genera in (A) impulsive group and
(B) non-impulsive group. Each node represents a genus, with node color indicating whether that
genus is enriched in the impulsive group (blue), enriched in the non-impulsive group (orange), or
shows no differential abundance (gray). Edges depict Spearman’s rank correlations between genera:
pink edges represent positive correlations, and blue edges represent negative correlations; thicker
edges indicate stronger associations.

2.4. Functional Pathway Analysis

Functional pathway analysis using PICRUSt2 and STAMP identified significant differ-
ences between the impulsive and non-impulsive groups (Figure 4). After FDR correction,
six pathways remained significantly associated with impulsive behaviors. The most signifi-
cant differences were observed in nicotinate and nicotinamide metabolism and biosynthesis
of type II polyketide products, both of which were relatively lower in the impulsive
group. Additionally, pathways related to xylene degradation, caffeine metabolism, in-
dole alkaloid biosynthesis, and dioxin degradation were also significantly reduced in the
impulsive group.
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Figure 4. Comparison of metabolic pathway differences between impulsive and non-impulsive
Parkinson’s disease patients. Relative abundances of predicted functional pathways were com-
pared between groups using PICRUSt2 and STAMP. After false discovery rate (FDR) correction, six
pathways were significantly associated with impulsive behaviors (q < 0.05). The most significant
differences were observed in nicotinate and nicotinamide metabolism and biosynthesis of type II
polyketide products. The 95% confidence intervals for differences in mean proportions are shown.

3. Discussion
This study is the first to investigate the association between ICDs and gut microbiota

in PD patients. While overall microbial diversity did not differ significantly between
impulsive and non-impulsive groups, specific bacterial taxa, including Methanobrevibac-
ter and Intestinimonas butyriciproducens, were significantly enriched in impulsive patients.
Functional pathway analysis further revealed that impulsivity was linked to alterations in
microbial metabolic functions related to nicotinate and nicotinamide metabolism, polyke-
tide biosynthesis, and xenobiotic degradation. These findings suggest that gut microbiota
may be involved in ICD in PD through taxonomic shifts and metabolic dysregulation. Given
the established role of the gut–brain axis in PD pathophysiology, the observed microbial
differences could potentially influence neurotransmitter metabolism, neuroinflammation,
or other pathways implicated in impulsivity.

Our findings suggest that taxonomic differences rather than overall microbial diversity
may play a role in impulsivity among PD patients. This is consistent with the results
from the study of imprisoned impulsive versus non-impulsive women [17], in which no
difference in alpha nor beta diversities were found between the groups. The apparent
lack of diversity differences alongside taxonomic shifts is not contradictory and is in
fact a commonly reported pattern in microbiome studies. Diversity metrics reflect the
overall richness and evenness of microbial communities, but they may not capture specific
compositional changes in individual taxa that could be biologically meaningful. Thus, the
identification of distinct taxa such as Methanobrevibacter and Intestinimonas butyriciproducens
in the absence of global diversity changes is consistent with prior findings and supports the
notion that targeted microbial shifts, rather than broad diversity alterations, may underlie
behavioral phenotypes such as impulsivity. Interestingly, the same research group reported
that Methanobrevibacter abundance was positively correlated with isobutyric and isovaleric
acids—branched chain fatty acids that may contribute to colonic epithelial stress under
certain conditions [18].

Given the emerging evidence linking gut microbiota to neurobehavioral regulation, it is
plausible that these microbial alterations contribute to impulsivity through their metabolic
byproducts and interactions with the gut–brain axis. Short-chain fatty acids (SCFAs), partic-
ularly butyrate, have been shown to influence brain function and behavior by modulating
neuroinflammation, blood–brain barrier integrity, and neurotransmitter production [19].
Dysbiosis of SCFA-producing bacteria may lead to abnormal SCFA production, which in
turn could affect neural signaling and impulse control. Our results showed that Intestini-
monas butyriciproducens, a butyrate-producing bacterium [20], was significantly enriched
in the impulsive group. Butyrate has been implicated in regulating GABA and serotonin
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levels, both of which play crucial roles in impulse control and emotional regulation [21].
The altered abundance of Intestinimonas butyriciproducens and other SCFA-related bacteria
in our study suggests a potential link between gut microbial metabolism and impulsive
behaviors in PD.

The functional pathway analysis identified significant metabolic differences between
impulsive and non-impulsive PD patients, particularly in nicotinate and nicotinamide
metabolism, polyketide biosynthesis, caffeine metabolism, and indole alkaloid biosynthesis.
These pathways are involved in neurotransmitter regulation, antioxidant defense, and
detoxification, suggesting that microbial metabolism may influence behavioral control
mechanisms. Notably, caffeine metabolism was significantly reduced in the impulsive
group, which may indicate alterations in adenosine receptor signaling. Caffeine has been
reported to modulate dopamine release [22,23], both of which are linked to impulse control.
Given that gut microbiota influence caffeine metabolism, these findings raise the possibility
that microbial changes in PD could indirectly affect neurochemical pathways involved
in impulsivity. However, it remains unclear whether these differences are a cause or
consequence of impulsive behaviors in PD.

Alterations in indole alkaloid biosynthesis suggest a potential link between gut mi-
crobial tryptophan metabolism and serotonin regulation. The gut microbiota contribute
to the production of indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), and indole
acetaldehyde (IAAld), which are implicated in neuroprotection, oxidative stress reduction,
and serotonin synthesis [24,25]. Since serotonin plays a key role in mood and impulse
regulation, disruptions in microbial-derived indole metabolism could influence ICD symp-
toms in PD patients. Prior studies have shown that serotonin production is modulated
by specific gut bacteria, and dietary tryptophan intake can impact motor and behavioral
outcomes in PD models [24,25]. The observed reductions in this pathway in the impulsive
group suggest a possible microbial contribution to serotonin dysregulation, though further
research is needed to determine its clinical relevance and potential therapeutic implications.

Our findings further contribute to the emerging literature connecting gut microbiota to
behavioral regulation. A recent study by Konstanti et al. (2024) [26] investigated impulsivity
in older adults with metabolic syndrome and reported significant beta diversity differences
associated with cognitive performance, along with specific bacterial genera (e.g., Butyricic-
occus, Blautia) and functional pathways (e.g., glucuronate and galacturonate metabolism)
linked to impulsive traits. While their study demonstrated both broad compositional and
targeted taxonomic shifts, our results did not show significant diversity differences but
instead emphasized specific microbial taxa and functional changes associated with impul-
sivity in PD. Together, these complementary findings suggest that microbial signatures
of impulsivity may vary depending on the population and phenotype assessed. In line
with this, a recent systematic review by Langmajerová, Roubalová, Šebela, and Vevera
(2023) [27] highlighted the limited but growing evidence on the relationship between gut
microbiota and impulsive or violent behavior, particularly in neuropsychiatric conditions.
Our study extends this research frontier by characterizing microbiome-behavior associa-
tions in Parkinson’s disease—a context not previously explored—thereby contributing to
a broader understanding of how the gut–brain axis may influence behavioral regulation
across diverse clinical populations.

Although this study provides insights into the association between gut microbiota
and impulsive behaviors in PD patients, several limitations should be considered. First,
the sample size was relatively small, which may have limited the statistical power to
detect subtle microbiome-behavior associations. Second, the cross-sectional design pre-
cludes the establishment of causality. It remains unclear whether gut microbial alterations
contribute to the development of impulsivity or arise as a secondary effect of behavioral
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or physiological changes in PD. Longitudinal studies are necessary to assess temporal
changes in microbial composition and metabolic pathways in relation to impulse control
disorders. Additionally, metabolic pathway predictions were derived from bioinformatics
tools rather than direct metabolite quantification. While predictive approaches provide
valuable functional insights, they do not capture dynamic metabolic processes or confirm
biochemical activity in vivo. Future studies should incorporate targeted metabolomics to
validate microbial contributions to neurotransmitter metabolism and behavioral regula-
tion. Furthermore, potential confounding factors such as dietary habits, medication use,
and disease severity were not fully accounted for. In particular, dietary intake data were
obtained from a self-reported food frequency questionnaire that captured whether partici-
pants consumed certain food groups (e.g., fruits, grains, meats) on a daily basis. While this
provides some insight into general dietary habits, the data lacked detail on portion sizes,
preparation methods, or total nutrient intake. These limitations constrained our ability to
fully adjust for dietary influences on the gut microbiota. Addressing these limitations in
future research will be crucial to understanding the complex interplay between the gut
microbiome and impulsivity in PD.

The findings of this study indicate that specific gut microbial taxa and metabolic
functions may be associated with impulsivity in PD, despite the fact that overall microbiome
diversity was not significantly different between groups. This pilot study sheds light on
the possibility of future microbiome-targeted interventions, such as dietary modifications
or probiotics, on influencing impulsivity in PD patients.

4. Materials and Methods
4.1. Participant Recruitment and Data Collection

We adapted data from the study conducted by Hill-Burns et al. [28], which initially
involved 376 participants recruited through the NeuroGenetics Research Consortium at
multiple sites in the United States, including Seattle, Washington; Atlanta, Georgia; and
Albany, New York, between March 2014 and January 2015. A total of 45 individuals
were excluded: 41 due to having fewer than 5000 sequencing reads and 4 Parkinson’s
disease (PD) patients with missing data. The methodologies, along with the clinical and
genetic characteristics of the NeuroGenetics Research Consortium dataset, have been
comprehensively documented by Hamza et al. [29]. After these exclusions, the final dataset
included 331 participants, consisting of 200 individuals diagnosed with PD based on the
modified UK Brain Bank criteria [30] (134 males, 66 females; mean age: 68.35 years) and
131 self-reported healthy individuals without neurodegenerative conditions (52 males,
79 females; mean age: 70.37 years). Since none of the healthy controls exhibited impulsive
behaviors, further analyses were limited to the 200 PD patients. Impulse symptoms were
evaluated using the Gut Microbiome Questionnaire, and an additional 9 participants were
excluded due to missing impulse status data. Consequently, the final dataset consisted of
191 PD patients (128 males, 63 females; mean age: 68.04 years). Dietary intake was assessed
using a self-reported food frequency questionnaire. Participants reported the frequency of
consumption across major food groups (e.g., grains, nuts, meats, fruits, and vegetables).
Detailed information on portion sizes or nutrient intake was not available. Further details
regarding fecal sample collection, DNA extraction, sequencing, and metadata collection
can be found in Hill-Burns et al. [28]. To sum up, the exclusion process is as follows:

• Excluded 41 participants with <5000 sequencing reads
• Excluded 4 PD patients with missing clinical data
• Excluded 131 healthy controls (not included in final analysis)
• Excluded 9 PD patients with missing impulse behavior data
• Final analysis included 191 PD patients
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4.2. Analysis of 16S rRNA Sequence Data

The 16S rRNA gene was sequenced to enable bacterial identification. Adapter se-
quences were further removed using Trimmomatic v0.39 [31], and the reads were subse-
quently processed, aligned, and denoised using DADA2 v1.16 [32]. We filtered the reads
with the DADA2 recommended parameters, then de-replicated and denoised using de-
fault settings. An amplicon sequence variant (ASV) table was generated, and taxonomic
classification was conducted with the SILVA v132 database within DADA2. Species-level
annotations were assigned using the addSpecies function with SILVA as the reference.

To ensure consistent sequencing depth across samples, rarefaction was performed at
a threshold of 5000 reads per sample using the rarefy_even_depth function in phyloseq
v1.32.0. Samples with fewer than 5000 reads were excluded before rarefaction. For down-
stream statistical analyses, sequence counts were normalized to relative abundance by
dividing the number of sequences assigned to each ASV by the total sequence count in each
sample. Only ASVs detected in at least 10% of samples were retained for further analysis.

4.3. Statistical Analysis

Demographic characteristics—including age, sex, antibiotic or probiotic use, and
dietary intake (fruits, vegetables, grains, meats, nuts, and yogurt)—were compared between
individuals with and without impulse behavior in the PD group. The Kruskal–Wallis test
was used for continuous variables, while categorical variables were analyzed using the
chi-square test. These analyses were performed using the tableone v0.13.2. To assess overall
taxonomic diversity, alpha and beta diversity were calculated between the impulse and non-
impulse groups. Alpha diversity metrics, including observed richness, Chao1, Shannon,
and Simpson indices [33–35], were computed using phyloseq v1.50.0 [36] with p-values
obtained through analysis of variance in stats v4.4.2. Beta diversity was evaluated using
Canberra [37], unweighted UniFrac, weighted UniFrac [38], and Bray–Curtis distance [39],
all computed with phyloseq v1.50.0 [36]. ADONIS analysis in the vegan v2.6.4 package was
applied to determine statistical significance for beta diversity. Additionally, differences in
microbial composition and relative abundance were analyzed within the PD group based
on impulse status. A generalized linear model (GLM) with a negative binomial distribution
and a zero-inflated model was used to identify significant variations in gut microbiota
between impulse and non-impulse individuals, implemented using the glmmTMB v1.1.10.
Network analysis was conducted to examine the associations between gut bacterial genera
and impulsivity in PD patients. Based on the results from the differential abundance
analysis (volcano plot), we selected genera that exhibited significant differences between the
impulsive and non-impulsive groups for further exploration. Spearman’s rank correlation
coefficients were calculated to assess pairwise relationships among genera. The resulting
correlation matrix was visualized as a network graph, illustrating co-occurrence patterns
among bacterial genera. Network analysis was conducted with igraph v2.1.4, tidygraph
v1.3.1, and ggraph v2.2.1. Spearman and partial correlations were calculated using ppcor
v1.1 to assess feature associations, and significant interactions were visualized as a network
with ggraph v2.2.1.

4.4. Functional Enrichment Analysis of Predicted Metagenomes

Metagenome functional composition was predicted using Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States (PICRUSt2) v2.4.1 [40]. The stan-
dard pipeline was followed, which involved normalizing ASVs by copy number to account
for variations in 16S rRNA gene copies among taxa, predicting functions based on Kyoto
Encyclopedia of Genes and Genomes (KEGG) [41] orthologs, and categorizing predicted
pathways according to KEGG hierarchical level 3. Within the PD group, metabolic pathway
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differences between individuals with and without impulse behavior were analyzed using
Statistical Analysis of Metagenomic Profiles (STAMP) software v2.1.3 [42]. Comparisons
were conducted using White’s non-parametric t-test (two-sided, 1000 replications), with
statistical significance determined by a Storey false discovery rate (FDR) threshold of <0.05.

4.5. Data Availability and Ethical Statement
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